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Abstract
Interfacial surface roughness can result in fluid leakage of seals, and in the design of seals it is standard to give an upper limit 
for the surface root-mean-square (rms) roughness amplitude h

rms
 . However, h

rms
 is determined mainly by the long-wavelength 

roughness, which is (nearly) irrelevant for the sealing. I discuss the parameters which determine the leakage of seals, and 
present results for static rubber seals with circular cross-section (like rubber O-rings). I also study the influence of the fluid 
pressure on the interfacial surface separation and the leakrate.

Graphical Abstract
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1  Introduction

Leakage of fluids through interfaces formed between rough 
surfaces squeezed together is a topic of great practical impor-
tance and its neglect can lead to huge economic losses and 

environmental problems. Here we are interested in rubber 
seals with circular (or half circular) cross-section squeezed 
against a counter surface, see Fig. 1. Examples of such 
seals are rubber O-rings or the ribs on the rubber stoppers 
in syringes. For rubber seals we can assume purely elastic 
deformations (no plastic flow) and if the surface roughness 
is not too big the nominal (or macroscopic) contact pressure 
will be Hertz-like (parabolic) [1] but the microscopic pres-
sure profile can be very complex due to surface roughness.

In the design of seals limits on the surface roughness is 
usually specified. In the literature the rms roughness ampli-
tude, hrms , is used to characterize the roughness and typically 
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for static seals it should be below ≈ 1 �m (see, e.g., [2, 3]). 
However, hrms is determined mainly by the long-wavelength 
roughness [4] which is (nearly) irrelevant for the sealing.

For complete sealing (no fluid leakage) the area of real 
contact must percolate. For surfaces with random roughness 
this occur when the relative contact area [5] A∕A0 ≈ 0.42 . 
The area of real contact A is determined by the rubber vis-
coelastic modulus, and by the surface rms-slope (denoted � ), 
which depends on the roughness on all length scales and in 
particular on the shortest wavelength roughness.

Rubber seals are usually confined between the surfaces 
of two (nearly) rigid solids at a fixed compression �∕R (see 
Fig. 1). I will show that if �∕R is fixed and if the fluid pres-
sure is negligible compared to the rubber-countersurface 
pressure, then the fluid leakage rate does not depend on the 
elastic modulus of the rubber seal. This fundamental result 
differs from what is stated in the literature. In this paper I 
will also consider the dependency of the leakage rate as the 
fluid pressure approach the rubber-countersurface contact 
pressure, resulting in “lift-off” and a strong increase in the 
fluid leakrate [6].

2 � Surface Roughness Power Spectra 
and the rms Surface Slope

All surfaces of solids have surface roughness and many sur-
faces exhibit self-affine fractal behavior [7]. This implies 
that if a surface area is magnified new (shorter wavelength) 
roughness is observed which appears very similar to the 
roughness observed at smaller magnification, assuming 
that the vertical coordinate is scaled with an appropriate 
factor. The roughness profile z = h(�) of a surface can be 
written as a sum of plane waves exp(i� ⋅ �) with different 

wave vectors � . The wavenumber q = |�| = 2�∕� , where � 
is the wavelength of one roughness component. A self-affine 
fractal surface has a two-dimensional (2D) power spectrum 
C(�) ∼ q−2(1+H) (where H is the Hurst exponent related to 
the fractal dimension Df = 3 − H ), which is a is a strait line 
with the slope −2(1 + H) when plotted on a log-log scale. 
Most solids have surface roughness with the Hurst exponent 
0.7 < H < 1 (see Ref. [8]).

The most important information about the surface topog-
raphy of a rough surface is the surface roughness power 
spectrum. The power spectrum of a surface z = h(x, y) is 
given by [4, 8, 9]

where ⟨..⟩ stands for ensemble averaging. In what follows 
we will assume isotropic roughness so that the power spec-
trum C(q) depends only on the magnitude q = |�| of the 
wavevector.

Contact mechanics theory [10] shows that the contact 
between two solids with different surface roughness h1(�) 
and h2(�) , and different elastic properties (Young’s modulus 
E1 and E2 , and Poisson ratio �1 and �2 ) can be mapped on a 
problem of the contact between an elastic half space (with 
the effective modulus E∗ and Poisson ratio � = 0 ) with a flat 
surface, and a rigid solid with the combined surface rough-
ness h(�) = h1(�) + h2(�) . If the surface roughness on the 
two surfaces are uncorrelated then the surface roughness 
power spectrum of the rigid surface

(1)C(�) =
1

(2�)2 ∫ d2x ⟨h(�)h(�)⟩ei�⋅�

Pa Pb

fluid rubber
R

w=2a

δ

F/L

rigid

Fig. 1   Half rubber O-ring between two solid walls. The O-ring act 
with a force per unit length F/L on the solid walls. The compression 
�∕R is determined by the penetration � and the radius R of the O-ring 
cross-section
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Fig. 2   The power spectra of two surfaces with the Hurst exponent 
H = 1 (blue) and H = 0.8 (red), as a function of the wavenumber. 
Both surfaces have the root-mean-square (rms) roughness amplitude 
hrms = 0.3 �m but the rms-slope differs: It is � = 0.103 and 0.445 for 
the H = 1 and H = 0.8 surfaces, respectively. Both surfaces have the 
large wavenumber cut-off q1 = 1010 m−1 , the roll-off wavenumber 
qr = 105 m−1 and the small wavenumber cut-off q0 = 103 m−1 (Color 
figure online)
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where C1(q) and C2(q) are the power spectra of the original 
surfaces. The effective modulus of the elastic solid is deter-
mined by

For randomly rough surfaces, all the (ensemble averaged) 
information about the surface is contained in the power spec-
trum C(q). For this reason the only information about the 
surface roughness which enter in contact mechanics theo-
ries (with or without adhesion) is the function C(q). Thus, 
the (ensemble averaged) area of real contact, the interfacial 
stress distribution and the distribution of interfacial separa-
tions, are all determined by C(q) (see Ref. [11–13]).

Note that moments of the power spectrum determines 
standard quantities which are output of most stylus instru-
ments and often quoted. Thus, for example, the mean-square 
(ms) roughness amplitude is given by [4, 8, 9]

and the ms-slope

The rms-slope is denoted with � . Here we have assumed that 
the surface roughness has isotropic statistical properties, but 

(2)C(q) = C1(q) + C2(q),

(3)1

E∗
=

1 − �2
1

E1

+
1 − �2

2

E2

(4)⟨h2⟩ = 2� ∫
q1

q0

dq qC(q).

(5)⟨(∇h)2⟩ = �2 = 2� ∫
q
1

q
0

dq q3C(q).

(4) and (5) are also valid for anisotropic roughness in C(q) 
is considered as the angular average (in �-space) of C(�).

Surfaces used for rubber seals have typically the rms 
roughness between 0.1 𝜇m < hrms < 1 𝜇m , and the Hurst 
exponent 0.7 < H < 1 . Figure 2 shows the power spectra 
of two surfaces with the Hurst exponent H = 1 (blue) and 
H = 0.8 (red), as a function of the wavenumber. Both sur-
faces have the root-mean-square (rms) roughness amplitude 
hrms = 0.3 �m but the rms-slope differs: It is � = 0.103 and 
0.445 for the H = 1 and H = 0.8 surfaces, respectively. Both 
surfaces have the large wavenumber cut-off q1 = 1010 m−1 , 
the roll-off wavenumber qr = 105 m−1 and the small wave-
number cut-off q0 = 103 m−1 . Note that the power spectra 
differs a lot for large wavenumber, but the rms roughness is 
determined mainly by the long-wavelength roughness which 
is very similar in both cases. The rms-slope depends on the 
large wavenumber roughness which is much larger for the 
H = 0.8 surface then for the H = 1 surface. This fact is illus-
trated in detail in Fig. 3.

Figure 3 shows the cumulative rms roughness ampli-
tude (in �m ) and the rms-slope of the two surfaces H = 1 
(blue) and H = 0.8 (red), as a function of the large wave-
number cut-off. The results are obtained from (4) and (5) 
where we have increased the large wavenumber cut-off q1 
from q0 = 103 m−1 to its final value 1010 m−1 . Note that the 
rms roughness in both cases is determined by the small 
wavenumber region of the power spectra, while the rms-
slope depends on the roughness on all length scales, and for 
H = 0.8 the largest wavenumber (short wavelength) region 
gives the biggest contribution.

Figure 3 shows that the rms roughness is irrelevant for the 
leakage of seals since the contact area is determined by the 
rms-slope � , which is much bigger for the H = 0.8 surface 

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 3  4  5  6  7  8  9  10

H=0.8
H=1

rms-slope

rms-roughness
amplitude (µm)

log10 q1  (1/m)

Fig. 3   The rms roughness amplitude (in �m ) and the rms-slope of 
two surfaces with the Hurst exponent H = 1 (blue) and H = 0.8 (red), 
as a function of the cut-off wavenumber. When including all the 
roughness both surfaces have the root-mean-square (rms) roughness 
amplitude hrms = 0.3 �m but the rms-slope differs: It is � = 0.103 and 
0.445 for the H = 1 and H = 0.8 surfaces, respectively (Color figure 
online)
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Fig. 4   The calculated area of real contact as a function of the nominal 
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then the H = 1 surface, in spite of the fact that both surfaces 
have the same rms roughness.

3 � Percolation of the Contact Area

The contact area between two solids depends on the magnifica-
tion. When the magnification increases new surface roughness 
is observed and the (projected) contact area decreases. If the 
contact area percolate at the highest magnification, where all 
the surface roughness is included in the analysis, then no fluid 
leakage is possible.

The contact area depends on the rms-slope � of the rough 
surface and on the effective elastic modulus E∗ = E∕(1 − �2) 
of the rubber. Figure 4 shows the calculated area of real con-
tact as a function of the nominal contact pressure divided by E∗ 
and by the rms-slope � of the rough surface. In the calculation 
we have assumed a randomly rough surface and in this case 
the contact area only depends on the parameter p∕(E∗�) and 
takes the universal form shown in the figure. The contact area 
percolate when p ≈ 0.23�E∗.

Here we are interested in a cylinder rubber rib (radius R) 
squeezed against a flat hard surface with random roughness. 
From Hertz theory for cylinder geometry the force per unit 
length F/L can be related to the effective modulus E∗ and the 
penetration � (see inset in Fig. 5) as [10]:

The width of the contact region

(6)
F

L
=

�

4
E∗�

The maximum contact pressure

From (6) and (8) we get

In order for the contact area to percolate in the high pressure 
region we need p0 = 0.23�E∗ (or larger) (see Fig. 4). Using 
this pressure in (9) we get

Thus in order for the seal not to leak the compression �∕R 
must be at least 0.22�2 , where � is the rms-slope including 
all the roughness. In a typical case � ≈ 1 and the theory pre-
dict that the compression must be at least 20% in order for 
the sealing to be completely tight. Note that the condition 
(10) is independent of the elastic modulus of the sealing 
material. The reason for this is that increasing the elastic 
modulus increases the contact pressure but at the same time 
the pressure needed to squeeze the rubber into the roughness 
profile gets higher, and the two effects cancel each other so 
the contact area (and the distribution of interfacial sepa-
ration) remain unchanged. For real rubber materials, with 
non-linear stress-strain relations, this hold strictly true only 
if the microscopic strain in the asperity contact regions is 
similar to the macroscopic strain in the Hertz contact region.

(7)w = 2(R�)1∕2

(8)p0 =

(
E∗F∕L

�R

)1∕2

(9)�

R
=

(
2p0

E∗

)2

(10)
�

R
= 0.22�2
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Fig. 5   The calculated area of real contact as a function of the penetra-
tion � divided by the radius R of the rubber cylinder and the square 
of the rms-slope � . The contact area percolate when the compression 
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surfaces. For E = 10 MPa and � = 0.5 and using the power spectra 
shown in Fig. 2
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Figure 5 shows the calculated area of real contact as 
a function of the penetration � divided by the radius R 
of the rubber cylinder and the square of the rms-slope � . 
The results is obtained from Fig. 4 using the relation (9) 
between the penetration and the pressure. The contact area 
percolate when the compression �∕R = 0.22�2.

Figure 6 shows the calculated area of real contact as a 
function of the nominal contact pressure for the H = 1 (blue 
curve) and the H = 0.8 (red) surfaces. Here we have used 
E = 10 MPa and � = 0.5 and the power spectra shown in 
Fig. 2. The contact area percolate when p = 0.38 MPa for 
H = 1 and for p = 1.64 MPa for H = 0.8.

4 � Fluid Leakage Theory and Dependency 
of the Leakrate on the Fluid Pressure

The discussion in Sect. 3 is valid as long as the fluid pressure 
pa on the high pressure side is much smaller than the maxi-
mum contact pressure. When this is not the case the fluid 
will increase the separation between the surfaces and result 
in an increased leakage rate. In particular, for large enough 
fluid pressure lift-off occur resulting in a catastrophic failure 
of the seal. In this section we will discuss the influence of 
the fluid pressure on the leakage rate.

The fluid pressure has two effects on a seal: it will elasti-
cally deform the seal and change its macroscopic shape (see 
Fig. 7) which will affect the contact pressure distribution. In 
addition, the fluid pressure will affect the surface separation 
in the nominal contact region. The first effect can be studied 
using standard Finite Element Method (FEM) calculations. 
In some applications, like in most O-ring applications (see 
Fig. 7), the nominal contact pressure increases nearly pro-
portional to the fluid pressure while the fluid pressure at the 
contacting interface increases slower (it decreases from pa 
at the inlet to pb on the exit side and is hence smaller than pa 
in the sealing region where the contact pressure is highest). 
Hence an O-ring seal may leak when the fluid pressure pa is 
small while it is tight when the fluid pressure is high. This 
effect was observed recently in a syringe  application (with a 
steel plunger road with a rubber O-ring seal) [14]. However, 
in some other sealing configurations the fluid pressure may 
have a negligible influence on the nominal squeezing pres-
sure, and in these cases lift-off occur if the fluid pressure is 
high enough, as observed in Ref. [6].

Since the effect of the fluid pressure on the nominal con-
tact pressure is well understood, and in order to have a clean 
situation, we will not considered this effect here, but we 
assume that the contact pressure distribution p0(x) is known 
and of Hertz-like form for simplicity.

We will study the influence of the fluid pressure on the 
leakrate for two cases, where, in the absence of the fluid, 
the contact area does not percolate or does percolate. In the 
former case the nominal contact pressure is below the per-
colation pressure everywhere in the nominal contact region, 
while in the second case the contact area percolate in a rec-
tangular strip −b < x < b at the center of the contact area 
(see Fig. 8).

4.1 � Theory

We will calculate the fluid leakage using the effec-
tive medium theory developed in Ref. [6] (see also Ref. 
[15–20]). The ensemble averaged fluid flow current

(11)� = −�eff∇pfluid

Pa

(a) no fluid pressure (b) with fluid pressure

Fig. 7   a A rubber O-ring at fixed compression without fluid pressure. 
b Fluid pressure push the rubber O-ring against one of the confining 
walls

x
aa- 0

y
contact area
percolate

-b b

yrddiulf

Fig. 8   The contact area (black) percolate in a strip −b < x < b at the 
center of the Hertz line contact region. In this case no fluid (blue) can 
flow from the left to the right. (Schematic) (Color figure online)
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where pfluid is the ensemble averaged fluid pressure. The 
effective conductivity �eff is calculated using the Bruggeman 
effective medium theory. In this theory enters the probabil-
ity distribution of interfacial separations which is calculated 
using the Persson contact mechanics theory. For the cylinder 
geometry which interest us here the fluid pressure pfluid(x) 
and the (asperity) contact pressure (also ensemble averaged) 
pcont(x) depends only on the coordinate x orthogonal to the 
cylinder axis. If we denote

then the leakrate (volume per unit time) is given by

where Lx = 2a is the width of the nominal contact region in 
the fluid flow direction, orthogonal to the cylinder axis. The 
fluid pressure

The (ensemble averaged) pressure acting on the rubber sur-
face is

In the absence of the fluid pressure the contact pressure is 
assumed to be Hertz-like:

(12)S(x) = ∫
x

0

dx��−1
eff
(pcont(x

�))

(13)Q̇ =
Ly(pa − pb)

S(Lx)

(14)pfluid(x) = pa − (pa − pb)
S(x)

S(Lx)

(15)p0(x) = pcont(x) + pfluid(x)

(16)p0(x) = p0

(
1 −

(
x

a

)2
)1∕2

This pressure result from the macroscopic deformations of 
the rubber. Thus a small change in the interfacial surface 
separation induced by the fluid pressure will have a negli-
gible influence on the (ensemble averaged) pressure acting 
on the rubber surface except in the entrance region ( x ≈ −a ) 
where p0(x) is very small [ p0(x) → 0 as x → −a ]. In this 
region lift-off will occur and the pressure acting on the rub-
ber will equal the fluid pressure pa . Thus we take p0(x) equal 
to pa in the lift-off region and equal to (16) in the remaining 
part of the contact region.
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Fig. 9   The logarithm of the leakrate as a function of the fluid pres-
sure pa for the H = 1 and hrms = 6 �m and for the compression 
�∕R = 0.15 . The seal is Ly = 1 m long. The contact area does not per-
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4.2 � Contact Area Does not Percolate

In this case open fluid flow channels occur at the interface 
for all applied fluid pressures pa . As an illustration consider 
the H = 1 surface but with a roughness scaled up with a 
factor of 20 so that hrms = 6 �m . For this case the rms-slope 
will be 20 times bigger than for the H = 1 surface with 
hrms = 0.3 �m . Thus � ≈ 20 × 0.103 ≈ 2 and the contact area 
at the center of the contact region will percolate for the com-
pression 𝛿∕R > 0.22𝜉2 ≈ 0.88 . Hence, for the compression 
0.15 and 0.3 the contact area will not percolate and the seal 
will leak already for arbitrary small fluid pressures pa . To 
illustrate this case Fig. 9 shows the logarithm of the leakrate 
as a function of the fluid pressure pa for the compression 
�∕R = 0.15 . Figure 10 shows the same results but now as 
a function of the logarithm of the fluid pressure pa . The 
strait line has the slope 1 showing that for fluid pressures 
pa < 0.1 MPa the leakrate is proportional to the fluid pres-
sure as expected when the separation between the surfaces 
is unchanged [15, 16].

Figure 11 shows the dependency of the fluid pressure 
pfluid (green line), the contact pressure pcont (blue line) and 
the total pressure ptot = pcont + pfluid (red line) on the coor-
dinate x in the nominal rubber-countersurface contact area. 
The fluid pressure on the high pressure side pa = 2.39 MPa . 
Note that the fluid pressure has separated the surfaces on the 

high pressure side so that no real contact occur between the 
rubber and the countersurface for 0 < x < 1 mm.

4.3 � Contact Area Percolate

We consider now the case where, when the fluid pressure 
vanish, the contact area percolate in a strip at the center of 
the contact. The percolated area will act as a barrier towards 
fluid leakage (see Fig. 8). In this case it is necessary to dis-
cuss how the seal was mounted. If the seal was mounted 
in the dry state regions with compressed air may form in 
the area where the contact area percolate. If the seal was 
mounted in the fluid, fluid filled (and pressurized) regions 
(lakes) may form in the percolated area. In order to have a 
well-defined system in this case we will assume that there 
is a very small fluid leak current through the contact region 
where the contact area percolate. This may be due to diffu-
sion of water molecules through the rubber matrix. In this 
case, after a long enough contact time, a well-defined sta-
tionary state will be formed, where some (extremely small) 
leakage occur even when the contact area percolate. We will 
describe this very small fluid flow by a constant (extremely 
small) flow conductivity �∗

eff
 in the region where the contact 

area percolate. The results presented below does not depend 
on the magnitude of �∗

eff
 as long as it is extremely small.

To illustrate the case when the contact area percolate for 
small fluid pressures we consider the two systems studied 
in Sect. 3 where � = 0.103 (surface H = 1 ) and � = 0.445 
(surface H = 0.8 ). For these two cases the contact area 
percolate for the compression �∕R ≈ 0.22�2 = 0.0023 and 
0.0436, respectively.
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online)
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below the percolation pressure pperc ≈ 1.64 MPa (see Fig.  6). For 
H = 0.8 , �∕R = 0.3 and the fluid pressure on the high pressure side 
pa = 3.39 MPa (Color figure online)
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Figure 12 shows the logarithm of the leakrate as a func-
tion of the fluid pressure pa for the H = 1 (green lines) and 
H = 0.8 (blue lines) surfaces. The two curves at the low-
est pressure are for the compression �∕R = 0.15 , and the 
two upper ones for �∕R = 0.3 . For low water pressure the 
contact area percolate and the leakage is negligible. Higher 
compression result in higher contact pressure and a higher 
water pressure is needed to separate the surfaces enough in 
order for the contact area not to percolate. For large enough 
water pressure the surface separation becomes so large that 

only the longest wavelength roughness (with the largest 
amplitude) matter. This is the reason the blue ( H = 0.8 sur-
face) and green ( H = 1 surface) lines for each compression 
merge at the highest water pressures. At even higher water 
pressure the surface roughness has a negligible influence on 
the leakage rate.

Figure 13 shows the dependency of the fluid pressure 
pfluid (green line), the contact pressure pcont (blue line), and 
the total pressure ptot = pcont + pfluid (red line) on the coordi-
nate x in the nominal rubber-countersurface contact area for 
H = 0.8 and �∕R = 0.3 . The fluid pressure pa = 3.39 MPa 
is so high that the contact pressure pcont is always below the 
percolation pressure pperc = 1.64 MPa . For the same system, 
in Fig. 14 we show the dependency of the fluid pressure and 
the total pressure on the coordinate x when the fluid pres-
sure on the high pressure side pa = 2.19 MPa . In this case 
the contact pressure pcont = ptot − pfluid is above the percola-
tion pressure pperc in a region 1.80 mm < x < 5.25 mm . In 
this region the fluid pressure is decreasing linearly with x 
as a result of the assumption of a constant fluid conductiv-
ity in this region. The result in Fig. 14 is of no practical 
importance since the leakage rate is negligible small (and 
determined by �∗

eff
 ) but the figure shows how deep into the 

contact the fluid penetrate by lift-off (to x ≈ 0.5 mm ) and 
by infiltration into the net-yet percolated contact region (to 
x ≈ 1.8 mm ). Note also that the fluid pressure vanish in a 
narrow x-region (from x ≈ 5.25 to 5.4 mm ) at the exit of 
the contact region, where the contact area is not percolated. 
Thus in this x-region the resistance to fluid flow is negligi-
ble because of the extremly small leak correct which result 
from the finite but extremly small flow conductivity �∗

eff
 in 

the percolated region.
Figure 15 shows the logarithm of the average surface sep-

aration as a function the coordinate x in the nominal rubber-
countersurface contact area. We show results for the fluid 
pressures pa = 0.73 , 1.46, 2.19, 3.29 and 3.65 MPa.

5 � Discussion

In the study above we have assumed linear elastic materi-
als. However, rubber materials are highly non-linear with a 
stress-strain curve �(�) which, for rubber with filler particles, 
first exhibiting strain softening followed by strain stiffen-
ing. The simplest way to approximately include this effect 
in the calculations presented above is to use an effective 
modulus Eeff(�) = �(�)∕� , where the strain � is the typical 
strain in the asperity contact regions. The macroscopic con-
tact pressure profile p0(x) can be calculated using the FEM 
approach including the full non-linear modulus e.g., using 
the Mooney–Rivlin material description [21]. The time (or 
frequency) dependency of the modulus can also be included 
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Fig. 14   The dependency of the fluid pressure pfluid (green line) and 
the total pressure ptot = pcont + pfluid (red line) on the coordinate x in 
the nominal rubber-countersurface contact area. The contact pres-
sure ptot − pfluid is above the percolation pressure pperc in a region 
1.80 mm < x < 5.25 mm . In this region the fluid pressure is decreas-
ing linearly with x as a result of assuming a contact fluid conductivity 
in this region (see text). For H = 0.8 , �∕R = 0.3 and the fluid pressure 
on the high pressure side pa = 2.19 MPa (Color figure online)
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in an approximate way as a time dependent factor deter-
mined by DMA measurements.

6 � Summary and Conclusion

A seal will not leak if the area of real contact percolate. 
In design manuals for rubber seals an upper limit for the 
rms roughness (or the arithmetical mean deviation) hrms is 
often given. However, hrms is determined by the most long-
wavelength roughness which usually has a negligible influ-
ence on the area of real contact. For non-adhesive contact 
between solids with randomly rough surfaces the area of 
real contact depends only on the rms-slope of the combined 
roughness. The rms-slope depends on all surface roughness 
wavelength components, and in particular on the short wave-
length roughness.

Static rubber seals are usually confined between the sur-
faces of two (nearly) rigid solids at a fixed compression �∕R 
(see Fig. 1). I have show that if �∕R is fixed and if the fluid 
pressure is negligible compared to the rubber-countersurface 
pressure, then the fluid leakage rate does not depend on the 
elastic modulus of the rubber seal.

We have shown that in order for the seal not to leak the 
compression �∕R must be at least 0.22�2 , where � is the rms-
slope including all the roughness. In a typical case � ≈ 1 
and the theory predict that the compression must be at least 
20% in order for the sealing to be completely tight. Note 
that the condition �∕R ≈ 0.22�2 is independent of the elastic 
modulus of the sealing material. The reason for this is that 
increasing the elastic modulus increases the contact pressure 
but at the same time the pressure needed to squeeze the rub-
ber into the roughness profile gets higher, and the two effects 
cancel each other so the contact area (and the distribution 
of interfacial separation) remain unchanged. For real rubber 
materials, with non-linear stress-strain relations, this hold 
strictly true only if the microscopic strain in the asperity 
contact regions is similar to the macroscopic strain in the 
Hertz contact region.

We have discussed the influence of the fluid pressure on 
the interfacial separation and the leakage of seals. When 
the fluid pressure increase towards the (maximum) contact 
pressure lift-off occur resulting in catastrophic increase in 
the leakage. In some applications, like in most O-ring appli-
cations, the contact pressure increases nearly proportional 
to the fluid pressure and in these applications no lift-off is 
expected for any fluid pressure but the seal may anyway fail 
for very high fluid pressures due to high tensile stresses act-
ing on the rubber as it is squeezed into the gap between the 
shaft and the housing.
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