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Abstract

Interfacial surface roughness can result in fluid leakage of seals, and in the design of seals it is standard to give an upper limit

for the surface root-mean-square (rms) roughness amplitude £

Tms*® > frms

However, A, is determined mainly by the long-wavelength

roughness, which is (nearly) irrelevant for the sealing. I discuss the parameters which determine the leakage of seals, and
present results for static rubber seals with circular cross-section (like rubber O-rings). I also study the influence of the fluid

pressure on the interfacial surface separation and the leakrate.
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1 Introduction

Leakage of fluids through interfaces formed between rough
surfaces squeezed together is a topic of great practical impor-
tance and its neglect can lead to huge economic losses and
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environmental problems. Here we are interested in rubber
seals with circular (or half circular) cross-section squeezed
against a counter surface, see Fig. 1. Examples of such
seals are rubber O-rings or the ribs on the rubber stoppers
in syringes. For rubber seals we can assume purely elastic
deformations (no plastic flow) and if the surface roughness
is not too big the nominal (or macroscopic) contact pressure
will be Hertz-like (parabolic) [1] but the microscopic pres-
sure profile can be very complex due to surface roughness.
In the design of seals limits on the surface roughness is
usually specified. In the literature the rms roughness ampli-
tude, A, is used to characterize the roughness and typically

> 7'rms?
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F/L

rubber

Fig. 1 Half rubber O-ring between two solid walls. The O-ring act
with a force per unit length F/L on the solid walls. The compression
8/R is determined by the penetration § and the radius R of the O-ring
cross-section

for static seals it should be below = 1 um (see, e.g., [2, 3]).
However, k... is determined mainly by the long-wavelength
roughness [4] which is (nearly) irrelevant for the sealing.

For complete sealing (no fluid leakage) the area of real
contact must percolate. For surfaces with random roughness
this occur when the relative contact area [5] A/A, =~ 0.42.
The area of real contact A is determined by the rubber vis-
coelastic modulus, and by the surface rms-slope (denoted &),
which depends on the roughness on all length scales and in
particular on the shortest wavelength roughness.

Rubber seals are usually confined between the surfaces
of two (nearly) rigid solids at a fixed compression /R (see
Fig. 1). I will show that if § /R is fixed and if the fluid pres-
sure is negligible compared to the rubber-countersurface
pressure, then the fluid leakage rate does not depend on the
elastic modulus of the rubber seal. This fundamental result
differs from what is stated in the literature. In this paper I
will also consider the dependency of the leakage rate as the
fluid pressure approach the rubber-countersurface contact
pressure, resulting in “lift-off” and a strong increase in the
fluid leakrate [6].

2 Surface Roughness Power Spectra
and the rms Surface Slope

All surfaces of solids have surface roughness and many sur-
faces exhibit self-affine fractal behavior [7]. This implies
that if a surface area is magnified new (shorter wavelength)
roughness is observed which appears very similar to the
roughness observed at smaller magnification, assuming
that the vertical coordinate is scaled with an appropriate
factor. The roughness profile z = h(x) of a surface can be
written as a sum of plane waves exp(iq - x) with different
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Fig.2 The power spectra of two surfaces with the Hurst exponent
H =1 (blue) and H = 0.8 (red), as a function of the wavenumber.
Both surfaces have the root-mean-square (rms) roughness amplitude
Iy = 0.3 pm but the rms-slope differs: It is £ = 0.103 and 0.445 for
the H = 1 and H = 0.8 surfaces, respectively. Both surfaces have the
large wavenumber cut-off ¢; = 10" m~!, the roll-off wavenumber
g, = 10° m~! and the small wavenumber cut-off ¢, = 10°> m~! (Color
figure online)

wave vectors q. The wavenumber g = |q| = 2z /A, where A
is the wavelength of one roughness component. A self-affine
fractal surface has a two-dimensional (2D) power spectrum
C(q) ~ g 2 +5 (where H is the Hurst exponent related to
the fractal dimension D; = 3 — H), which is a is a strait line
with the slope —2(1 + H) when plotted on a log-log scale.
Most solids have surface roughness with the Hurst exponent
0.7 < H < 1(see Ref. [8]).

The most important information about the surface topog-
raphy of a rough surface is the surface roughness power
spectrum. The power spectrum of a surface z = h(x, y) is
given by [4, 8, 9]

1
(27)?

Cg) = / dx (h(x)h(0))e'*™ 1)
where (..) stands for ensemble averaging. In what follows
we will assume isotropic roughness so that the power spec-
trum C(g) depends only on the magnitude ¢ = |q| of the
wavevector.

Contact mechanics theory [10] shows that the contact
between two solids with different surface roughness 4, (x)
and £/, (x), and different elastic properties (Young’s modulus
E, and E,, and Poisson ratio v; and v,) can be mapped on a
problem of the contact between an elastic half space (with
the effective modulus E* and Poisson ratio v = 0) with a flat
surface, and a rigid solid with the combined surface rough-
ness A(x) = h;(x) + h,(x). If the surface roughness on the
two surfaces are uncorrelated then the surface roughness
power spectrum of the rigid surface
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C(q) = Ci(g) + Cy(9), )

where C,(q) and C,(g) are the power spectra of the original
surfaces. The effective modulus of the elastic solid is deter-
mined by

2 2
1 I=vi 1-v]
- = + 3
E* E, E, ©)

For randomly rough surfaces, all the (ensemble averaged)
information about the surface is contained in the power spec-
trum C(g). For this reason the only information about the
surface roughness which enter in contact mechanics theo-
ries (with or without adhesion) is the function C(g). Thus,
the (ensemble averaged) area of real contact, the interfacial
stress distribution and the distribution of interfacial separa-
tions, are all determined by C(gq) (see Ref. [11-13]).

Note that moments of the power spectrum determines
standard quantities which are output of most stylus instru-
ments and often quoted. Thus, for example, the mean-square
(ms) roughness amplitude is given by [4, 8, 9]

91
(h*y =2z / dgq gC(q). 4)
9o
and the ms-slope
91
(Vh*y=¢& = 2,,/ dq 4’ C(g)- 5)
qo

The rms-slope is denoted with &. Here we have assumed that
the surface roughness has isotropic statistical properties, but
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Fig.3 The rms roughness amplitude (in um) and the rms-slope of
two surfaces with the Hurst exponent H = 1 (blue) and H = 0.8 (red),
as a function of the cut-off wavenumber. When including all the
roughness both surfaces have the root-mean-square (rms) roughness
amplitude k., = 0.3 ym but the rms-slope differs: It is £ = 0.103 and
0.445 for the H = 1 and H = 0.8 surfaces, respectively (Color figure
online)

(4) and (5) are also valid for anisotropic roughness in C(q)
is considered as the angular average (in q-space) of C(q).

Surfaces used for rubber seals have typically the rms
roughness between 0.1 ym < A, < 1 ym, and the Hurst
exponent 0.7 < H < 1. Figure 2 shows the power spectra
of two surfaces with the Hurst exponent H = 1 (blue) and
H = 0.8 (red), as a function of the wavenumber. Both sur-
faces have the root-mean-square (rms) roughness amplitude
hyms = 0.3 ym but the rms-slope differs: It is § = 0.103 and
0.445 for the H = 1and H = 0.8 surfaces, respectively. Both
surfaces have the large wavenumber cut-off ¢, = 10'° m~1,
the roll-off wavenumber ¢, = 10> m~! and the small wave-
number cut-off ¢, = 103 m~!. Note that the power spectra
differs a lot for large wavenumber, but the rms roughness is
determined mainly by the long-wavelength roughness which
is very similar in both cases. The rms-slope depends on the
large wavenumber roughness which is much larger for the
H = 0.8 surface then for the H = 1surface. This fact is illus-
trated in detail in Fig. 3.

Figure 3 shows the cumulative rms roughness ampli-
tude (in um) and the rms-slope of the two surfaces H = 1
(blue) and H = 0.8 (red), as a function of the large wave-
number cut-off. The results are obtained from (4) and (5)
where we have increased the large wavenumber cut-off g,
from g, = 10° m™ to its final value 10! m~'. Note that the
rms roughness in both cases is determined by the small
wavenumber region of the power spectra, while the rms-
slope depends on the roughness on all length scales, and for
H = 0.8 the largest wavenumber (short wavelength) region
gives the biggest contribution.

Figure 3 shows that the rms roughness is irrelevant for the
leakage of seals since the contact area is determined by the
rms-slope &, which is much bigger for the H = 0.8 surface
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Fig.4 The calculated area of real contact as a function of the nominal
contact pressure divided by E* = E/(1 — v?) and the rms-slope & of
the rough surface. The contact area percolate when p ~ 0.23¢E*
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Fig.5 The calculated area of real contact as a function of the penetra-
tion 6 divided by the radius R of the rubber cylinder and the square
of the rms-slope &. The contact area percolate when the compression
8/R = 0.22£?

then the H = 1 surface, in spite of the fact that both surfaces
have the same rms roughness.

3 Percolation of the Contact Area

The contact area between two solids depends on the magnifica-
tion. When the magnification increases new surface roughness
is observed and the (projected) contact area decreases. If the
contact area percolate at the highest magnification, where all
the surface roughness is included in the analysis, then no fluid
leakage is possible.

The contact area depends on the rms-slope & of the rough
surface and on the effective elastic modulus E* = E/(1 — v?)
of the rubber. Figure 4 shows the calculated area of real con-
tact as a function of the nominal contact pressure divided by E*
and by the rms-slope & of the rough surface. In the calculation
we have assumed a randomly rough surface and in this case
the contact area only depends on the parameter p/(E*£) and
takes the universal form shown in the figure. The contact area
percolate when p =~ 0.23EE".

Here we are interested in a cylinder rubber rib (radius R)
squeezed against a flat hard surface with random roughness.
From Hertz theory for cylinder geometry the force per unit
length F/L can be related to the effective modulus £* and the
penetration 6 (see inset in Fig. 5) as [10]:

- =TE ©)

The width of the contact region
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Fig.6 The calculated area of real contact as a function of the nomi-
nal contact pressure for the H = 1 (blue curve) and the H = 0.8 (red)
surfaces. For £ = 10 MPa and v = 0.5 and using the power spectra
shown in Fig. 2

w = 2(R8)'/? (7

The maximum contact pressure

E*F/L\'?
Po = < ) (8)

R

From (6) and (8) we get

2
) 2pg

2 _ 9
= ( = ©)
In order for the contact area to percolate in the high pressure
region we need p, = 0.23EE™ (or larger) (see Fig. 4). Using
this pressure in (9) we get

6

2= 0.22&2 (10)

Thus in order for the seal not to leak the compression §/R
must be at least 0.22£2, where & is the rms-slope including
all the roughness. In a typical case £ =~ 1 and the theory pre-
dict that the compression must be at least 20% in order for
the sealing to be completely tight. Note that the condition
(10) is independent of the elastic modulus of the sealing
material. The reason for this is that increasing the elastic
modulus increases the contact pressure but at the same time
the pressure needed to squeeze the rubber into the roughness
profile gets higher, and the two effects cancel each other so
the contact area (and the distribution of interfacial sepa-
ration) remain unchanged. For real rubber materials, with
non-linear stress-strain relations, this hold strictly true only
if the microscopic strain in the asperity contact regions is
similar to the macroscopic strain in the Hertz contact region.
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(a) no fluid pressure (b) with fluid pressure
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Fig.7 a A rubber O-ring at fixed compression without fluid pressure.
b Fluid pressure push the rubber O-ring against one of the confining
walls

contact area
percolate

<

Fig.8 The contact area (black) percolate in a strip —b < x < b at the
center of the Hertz line contact region. In this case no fluid (blue) can
flow from the left to the right. (Schematic) (Color figure online)

Figure 5 shows the calculated area of real contact as
a function of the penetration 6 divided by the radius R
of the rubber cylinder and the square of the rms-slope &.
The results is obtained from Fig. 4 using the relation (9)
between the penetration and the pressure. The contact area
percolate when the compression §/R = 0.22£2.

Figure 6 shows the calculated area of real contact as a
function of the nominal contact pressure for the H = 1 (blue
curve) and the H = 0.8 (red) surfaces. Here we have used
E =10 MPa and v = 0.5 and the power spectra shown in
Fig. 2. The contact area percolate when p = 0.38 MPa for
H = 1and for p = 1.64 MPa for H = 0.8.

4 Fluid Leakage Theory and Dependency
of the Leakrate on the Fluid Pressure

The discussion in Sect. 3 is valid as long as the fluid pressure
p, on the high pressure side is much smaller than the maxi-
mum contact pressure. When this is not the case the fluid
will increase the separation between the surfaces and result
in an increased leakage rate. In particular, for large enough
fluid pressure lift-off occur resulting in a catastrophic failure
of the seal. In this section we will discuss the influence of
the fluid pressure on the leakage rate.

The fluid pressure has two effects on a seal: it will elasti-
cally deform the seal and change its macroscopic shape (see
Fig. 7) which will affect the contact pressure distribution. In
addition, the fluid pressure will affect the surface separation
in the nominal contact region. The first effect can be studied
using standard Finite Element Method (FEM) calculations.
In some applications, like in most O-ring applications (see
Fig. 7), the nominal contact pressure increases nearly pro-
portional to the fluid pressure while the fluid pressure at the
contacting interface increases slower (it decreases from p,
at the inlet to p,, on the exit side and is hence smaller than p,
in the sealing region where the contact pressure is highest).
Hence an O-ring seal may leak when the fluid pressure p, is
small while it is tight when the fluid pressure is high. This
effect was observed recently in a syringe application (with a
steel plunger road with a rubber O-ring seal) [14]. However,
in some other sealing configurations the fluid pressure may
have a negligible influence on the nominal squeezing pres-
sure, and in these cases lift-off occur if the fluid pressure is
high enough, as observed in Ref. [6].

Since the effect of the fluid pressure on the nominal con-
tact pressure is well understood, and in order to have a clean
situation, we will not considered this effect here, but we
assume that the contact pressure distribution p,(x) is known
and of Hertz-like form for simplicity.

We will study the influence of the fluid pressure on the
leakrate for two cases, where, in the absence of the fluid,
the contact area does not percolate or does percolate. In the
former case the nominal contact pressure is below the per-
colation pressure everywhere in the nominal contact region,
while in the second case the contact area percolate in a rec-
tangular strip —b < x < b at the center of the contact area
(see Fig. 8).

4.1 Theory
We will calculate the fluid leakage using the effec-

tive medium theory developed in Ref. [6] (see also Ref.
[15-20]). The ensemble averaged fluid flow current

J = =04 VDhuia (11
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where pjg.iq 1S the ensemble averaged fluid pressure. The
effective conductivity o is calculated using the Bruggeman
effective medium theory. In this theory enters the probabil-
ity distribution of interfacial separations which is calculated
using the Persson contact mechanics theory. For the cylinder
geometry which interest us here the fluid pressure pgiq(x)
and the (asperity) contact pressure (also ensemble averaged)
Deont®) depends only on the coordinate x orthogonal to the
cylinder axis. If we denote

S(x) = / dx' 63 (Peon ™)) (12)
0
then the leakrate (volume per unit time) is given by
. Lp,—py)
_ -
Q0= S 13)

where L, = 2a is the width of the nominal contact region in
the fluid flow direction, orthogonal to the cylinder axis. The
fluid pressure

S(x)

(pa _pb)S(Lx)

Pauia®) =p, — (14)

The (ensemble averaged) pressure acting on the rubber sur-
face is
pO(x) = pcont(x) +pﬂuid(x) (15)

In the absence of the fluid pressure the contact pressure is
assumed to be Hertz-like:

2 1/2

Po(x)=l70<1 - (%) ) (16)
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Fig.9 The logarithm of the leakrate as a function of the fluid pres-
sure p, for the H=1 and h =6 ym and for the compression
6/R = 0.15. The seal is L, = 1 m long. The contact area does not per-
colate for any fluid pressure
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Fig. 10 The same as in Fig. 9 but with the pressure scale logarith-
mic. The strait line has the slope 1 showing that for fluid pressures
P, < 0.1 MPa the leakrate is proportional to the fluid pressure

This pressure result from the macroscopic deformations of
the rubber. Thus a small change in the interfacial surface
separation induced by the fluid pressure will have a negli-
gible influence on the (ensemble averaged) pressure acting
on the rubber surface except in the entrance region (x ~ —a)
where p(x) is very small [ py(x) = 0 as x = —a]. In this
region lift-off will occur and the pressure acting on the rub-
ber will equal the fluid pressure p,. Thus we take p,(x) equal
to p, in the lift-off region and equal to (16) in the remaining
part of the contact region.

3 T T T
H=1, rms=6um, 6/R=0.15
| P.=239MPa / Prot = Peont ¥ Pruia |
©
a2
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g
>
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pcont
\
0 1 1 1 1 1 1 1
0 1 2 3 4
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Fig. 11 The dependency of the fluid pressure pg.q (green line),
the contact pressure p., (blue line) and the total pressure
Dot = Peont T Pria (red line) on the coordinate x in the nominal rub-
ber-countersurface contact area. The contact pressure p.,, is below
the percolation pressure Pperc ® 1.6 MPa everywhere. For H =1,
6/R =0.15 and h,,; = 6 um and the fluid pressure on the high pres-
sure side p, = 2.39 MPa (Color figure online)
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4.2 Contact Area Does not Percolate

In this case open fluid flow channels occur at the interface
for all applied fluid pressures p,. As an illustration consider
the H = 1 surface but with a roughness scaled up with a
factor of 20 so that A,,,,, = 6 ym. For this case the rms-slope
will be 20 times bigger than for the H = 1 surface with
Rems = 0.3 ym. Thus & ~ 20 X 0.103 = 2 and the contact area
at the center of the contact region will percolate for the com-
pression 8 /R > 0.22&? ~ 0.88. Hence, for the compression
0.15 and 0.3 the contact area will not percolate and the seal
will leak already for arbitrary small fluid pressures p,. To
illustrate this case Fig. 9 shows the logarithm of the leakrate
as a function of the fluid pressure p, for the compression
6/R = 0.15. Figure 10 shows the same results but now as
a function of the logarithm of the fluid pressure p,. The
strait line has the slope 1 showing that for fluid pressures
p. < 0.1 MPa the leakrate is proportional to the fluid pres-
sure as expected when the separation between the surfaces
is unchanged [15, 16].

Figure 11 shows the dependency of the fluid pressure
Pauiq (green line), the contact pressure p,,, (blue line) and
the total pressure p,.; = Peont + Pauia (red line) on the coor-
dinate x in the nominal rubber-countersurface contact area.
The fluid pressure on the high pressure side p, = 2.39 MPa.
Note that the fluid pressure has separated the surfaces on the

8/R=0.15

log,, (leakrate) (mm?®/s)
&

-10 |

-12 : : : : : :
0 1 2 3 4
p. (MPa)

Fig. 12 The logarithm of the leakrate as a function of the fluid pres-
sure p, for the H =1 (green lines) and H = 0.8 (blue lines). The
seal is L, = 1 m long. The two curves at the lowest pressure are for
the compression 6/R = 0.15 and the two upper ones for /R = 0.3.
For low water pressure the contact area percolate and the leakage is
negligible. Higher compression result in higher contact pressure and
a higher water pressure is needed to separate the surfaces enough in
order for the contact area not to percolate. For large enough water
pressure the surface separation becomes so large that the surface
roughness has negligible influence on the leakage rate. This is the
reason the blue (H = 0.8 surface) and green (H = 1 surface) lines for
each compression merge at the highest water pressures (Color figure
online)

high pressure side so that no real contact occur between the
rubber and the countersurface for 0 < x < 1 mm.

4.3 Contact Area Percolate

We consider now the case where, when the fluid pressure
vanish, the contact area percolate in a strip at the center of
the contact. The percolated area will act as a barrier towards
fluid leakage (see Fig. 8). In this case it is necessary to dis-
cuss how the seal was mounted. If the seal was mounted
in the dry state regions with compressed air may form in
the area where the contact area percolate. If the seal was
mounted in the fluid, fluid filled (and pressurized) regions
(lakes) may form in the percolated area. In order to have a
well-defined system in this case we will assume that there
is a very small fluid leak current through the contact region
where the contact area percolate. This may be due to diffu-
sion of water molecules through the rubber matrix. In this
case, after a long enough contact time, a well-defined sta-
tionary state will be formed, where some (extremely small)
leakage occur even when the contact area percolate. We will
describe this very small fluid flow by a constant (extremely
small) flow conductivity ¢, in the region where the contact
area percolate. The results presented below does not depend
on the magnitude of 67, as long as it is extremely small.

To illustrate the case when the contact area percolate for
small fluid pressures we consider the two systems studied
in Sect. 3 where & = 0.103 (surface H = 1) and & = 0.445
(surface H = 0.8). For these two cases the contact area
percolate for the compression 8 /R = 0.22£% = 0.0023 and
0.0436, respectively.

4
g0 >
= Pruid
)
2 2t
7]
7]
o
Q H=0.8, 8/R=0.3

1F Pa=339MPa

0 n

0 1 2 3 4 5 6

Fig. 13 The dependency of the fluid pressure pg,q (green line), p o
(blue line) and the total pressure p, = peon + Pauia (red line) on the
coordinate x in the nominal rubber-countersurface contact area. The
fluid pressure is so high that the contact pressure p.., is always
below the percolation pressure p. ~ 1.64 MPa (see Fig. 6). For
H =0.8, §/R=0.3 and the fluid pressure on the high pressure side
P, = 3.39 MPa (Color figure online)
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H=0.8, 8/R=0.3
I p.=2.19 MPa

ptot = pcont + pﬂuid 4
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Fig. 14 The dependency of the fluid pressure pg,q (green line) and
the total pressure py,; = peoy + Pauig (ted line) on the coordinate x in
the nominal rubber-countersurface contact area. The contact pres-
sure py, — Pauia 1 above the percolation pressure p,. in a region
1.80 mm < x < 5.25 mm. In this region the fluid pressure is decreas-
ing linearly with x as a result of assuming a contact fluid conductivity
in this region (see text). For H = 0.8, 6 /R = 0.3 and the fluid pressure
on the high pressure side p, = 2.19 MPa (Color figure online)
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Fig. 15 The logarithm of the average surface separation as a function
the coordinate x in the nominal rubber-countersurface contact area.
We show results for several fluid pressures indicated in the figure
(p, =0.73,1.46, 2.19, 3.29 and 3.65 MPa)

Figure 12 shows the logarithm of the leakrate as a func-
tion of the fluid pressure p, for the H = 1 (green lines) and
H = 0.8 (blue lines) surfaces. The two curves at the low-
est pressure are for the compression §/R = 0.15, and the
two upper ones for /R = 0.3. For low water pressure the
contact area percolate and the leakage is negligible. Higher
compression result in higher contact pressure and a higher
water pressure is needed to separate the surfaces enough in
order for the contact area not to percolate. For large enough
water pressure the surface separation becomes so large that

@ Springer

only the longest wavelength roughness (with the largest
amplitude) matter. This is the reason the blue (H = 0.8 sur-
face) and green (H = 1 surface) lines for each compression
merge at the highest water pressures. At even higher water
pressure the surface roughness has a negligible influence on
the leakage rate.

Figure 13 shows the dependency of the fluid pressure
Piauia (green line), the contact pressure p.,,, (blue line), and
the total pressure p,; = Peont + Priniq (r€d line) on the coordi-
nate x in the nominal rubber-countersurface contact area for
H = 0.8 and 6/R = 0.3. The fluid pressure p, = 3.39 MPa
is so high that the contact pressure p_,,, is always below the
percolation pressure p,,.,. = 1.64 MPa. For the same system,
in Fig. 14 we show the dependency of the fluid pressure and
the total pressure on the coordinate x when the fluid pres-
sure on the high pressure side p, = 2.19 MPa. In this case
the contact pressure p.,nc = Pior — Pauiq 1S @bove the percola-
tion pressure p,.. in a region 1.80 mm < x < 5.25 mm. In
this region the fluid pressure is decreasing linearly with x
as a result of the assumption of a constant fluid conductiv-
ity in this region. The result in Fig. 14 is of no practical
importance since the leakage rate is negligible small (and
determined by ¢7;) but the figure shows how deep into the
contact the fluid penetrate by lift-off (to x ~ 0.5 mm) and
by infiltration into the net-yet percolated contact region (to
x ~ 1.8 mm). Note also that the fluid pressure vanish in a
narrow x-region (from x & 5.25 to 5.4 mm) at the exit of
the contact region, where the contact area is not percolated.
Thus in this x-region the resistance to fluid flow is negligi-
ble because of the extremly small leak correct which result
from the finite but extremly small flow conductivity ¢ in
the percolated region.

Figure 15 shows the logarithm of the average surface sep-
aration as a function the coordinate x in the nominal rubber-
countersurface contact area. We show results for the fluid
pressures p, = 0.73, 1.46, 2.19, 3.29 and 3.65 MPa.

5 Discussion

In the study above we have assumed linear elastic materi-
als. However, rubber materials are highly non-linear with a
stress-strain curve o(€) which, for rubber with filler particles,
first exhibiting strain softening followed by strain stiffen-
ing. The simplest way to approximately include this effect
in the calculations presented above is to use an effective
modulus E,(€) = o(e)/e, where the strain € is the typical
strain in the asperity contact regions. The macroscopic con-
tact pressure profile p,(x) can be calculated using the FEM
approach including the full non-linear modulus e.g., using
the Mooney—Rivlin material description [21]. The time (or
frequency) dependency of the modulus can also be included
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in an approximate way as a time dependent factor deter-
mined by DMA measurements.

6 Summary and Conclusion

A seal will not leak if the area of real contact percolate.
In design manuals for rubber seals an upper limit for the
rms roughness (or the arithmetical mean deviation) %, is
often given. However, £, is determined by the most long-
wavelength roughness which usually has a negligible influ-
ence on the area of real contact. For non-adhesive contact
between solids with randomly rough surfaces the area of
real contact depends only on the rms-slope of the combined
roughness. The rms-slope depends on all surface roughness
wavelength components, and in particular on the short wave-
length roughness.

Static rubber seals are usually confined between the sur-
faces of two (nearly) rigid solids at a fixed compression 6 /R
(see Fig. 1). I have show that if 6 /R is fixed and if the fluid
pressure is negligible compared to the rubber-countersurface
pressure, then the fluid leakage rate does not depend on the
elastic modulus of the rubber seal.

We have shown that in order for the seal not to leak the
compression 6 /R must be at least 0.22£2, where & is the rms-
slope including all the roughness. In a typical case & = 1
and the theory predict that the compression must be at least
20% in order for the sealing to be completely tight. Note
that the condition 8 /R ~ 0.22&? is independent of the elastic
modulus of the sealing material. The reason for this is that
increasing the elastic modulus increases the contact pressure
but at the same time the pressure needed to squeeze the rub-
ber into the roughness profile gets higher, and the two effects
cancel each other so the contact area (and the distribution
of interfacial separation) remain unchanged. For real rubber
materials, with non-linear stress-strain relations, this hold
strictly true only if the microscopic strain in the asperity
contact regions is similar to the macroscopic strain in the
Hertz contact region.

We have discussed the influence of the fluid pressure on
the interfacial separation and the leakage of seals. When
the fluid pressure increase towards the (maximum) contact
pressure lift-off occur resulting in catastrophic increase in
the leakage. In some applications, like in most O-ring appli-
cations, the contact pressure increases nearly proportional
to the fluid pressure and in these applications no lift-off is
expected for any fluid pressure but the seal may anyway fail
for very high fluid pressures due to high tensile stresses act-
ing on the rubber as it is squeezed into the gap between the
shaft and the housing.
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